Jump to main content

Course syllabus

This course is part of the programme
Materials Science

Objectives and competences

Material properties result from various phenomena occurring at scales ranging from nanometers to meters, and only a multiscale approach can provide a comprehensive understanding. Therefore, materials scientists must understand the fundamental concepts and techniques from different fields, which are integrally presented in this course. Computers allow us to efficiently solve a wide range of problems in the science and engineering of materials. The primary goal of the course Fundamentals to Materials Modeling is to introduce students to the basic concepts used in the simulation of different materials (metals, polymers, ceramics, and their composites) across various scales (continuum mechanics, statistical mechanics, molecular and atomistic simulations, quantum mechanics). The syllabus is structured to familiarize students with all the core concepts and equip them to choose the appropriate approaches and tools for solving problems related to material properties, their processing, and applications. They will be able to tackle simple problems associated with both microscopic and macroscopic issues in solid and fluid mechanics.

Prerequisites

Potrebna so visokošolska znanja s prve stopnje iz matematike, fizike, kemije, materialov, numeričnih metod ter osnovna znanja uporabe računalnika ter vsaj enega od sodobnih operacijskih sistemov (Windows ali Linux).Predmet Uvod v modeliranje materialov podaja osnovno razumevanje pojavov in numeričnih postopkov, ki jih uporabljamo na širokem področju simulacij materialov od elektronske pa do makroskopske ravni. Poudarek je na formulacijah in modelih osnovnih fizikalnih pojavov na vsakem izmed meril, njihovi sklopitvi in kako z njimi simuliramo specifični material. Študentje pripravijo seminar, ki osvetli eno izmed obravnavanih vsebin.

Content

Course in Fundamentals of materials modelling provides a basic understanding of phenomena and numerical approaches used in a broad field of materials simulations from the electronic to macroscopic level. The emphasis is placed on formulations and models of fundamental physical phenomena on each of the scales, their coupling and how to include them in a model of a specific material. Students prepare a seminar that elaborates one of the topics.

  1. Introduction
    • Aims and purpose of the course
    • Syllabus presentation
    • Presentation of teaching tools, resources and course execution
    • Students' obligations
    • Study instructions and suggestions
  2. Basic terms
    • Continuum
    • Conservation laws and continuity equation
    • Conservation of momentum and angular momentum
    • Conservation of energy
    • Transport of species
    • Entropy
    • Constitutive equations
    • Boundary and initial conditions
  3. Scaling and model simplifications
    • Basic scaling analysis
  4. Electronic level
    • Fundamentals of quantum mechanics and wave function
    • Schrödinger equation and Hamiltonian
    • Multiparticle systems and spin systems
    • Description of electronic levels of a system
  5. Molecular dynamics
    • Newtonian dynamics
    • Thermostats (Andersen, Berendsen, Nose-Hoover)
    • Force field
    • Areas of applications and limits
  6. Kinetic Monte Carlo
    • Probability and stochastic events
    • Reactions and rare events
    • Transition state theory
  7. Microkinetic models
    • Mass balance
    • Reactions in gaseous mixtures
  8. Incompressible fluid flow (computational fluid dynamics)
    • Constitutive equations, boundary conditions.
    • Specifics of numerical solution
    • Pressure-velocity couplings
  9. Hands-on work with simulation systems (seminar paper)
    • Gamess, QuantumEspresso
    • Zacros
    • Matlab, Python
    • OpenFOAM

Intended learning outcomes

Students will master the fundamental concepts of understanding and computational modeling of materials across various scales. They will be able to select appropriate methods for modeling specific systems and identify the tools designed for this purpose. Additionally, they will acquire the necessary skills to independently familiarize themselves with the details of computational tools and apply them to real-world scenarios.

Assessment

Seminar paper with an oral presentation to assess the understanding of the approach to solving a technical problem.

Written or oral exam to evaluate knowledge of fundamental concepts and the ability to independently solve problems using developed computational programs.

Lecturer's references

Pridr. prof. dr. Miha Grilc je višji znanstveni sodelavec na Kemijskem inštitutu in vodja Skupine za pretvorbe biomase na Odseku za katalizo in reakcijsko inženirstvo. Njegove raziskave so usmerjene v pretvorbo biomase v gradnike z višjo dodano vrednostjo in opis teh pretvorb na več ravneh. Osredotoča se zlasti na lesno biomaso, kaskadno frakcionacijo in defunkcionalizacijo.
Pridr. prof. dr. Matej Huš je višji znanstveni sodelavec na Kemijskem inštitutu in vodja Skupine za teoretično katalizo na Odseku za katalizo in reakcijsko inženirstvo. Njegove raziskave so usmerjene v fundamentalni opis kemijskih pretvorb na ravni kvantne mehanike, kinetičnega