Jump to main content

Materials for energy conversion and storage

This course is part of the programme
Materials Science

Objectives and competences

Students are introduced to the basic principles of how devices for electrochemical conversion and storage function. A strong understanding of electrochemistry provides the foundation for exploring electrocatalysis and battery systems. Students learn about the physicochemical mechanisms occurring in these devices during operation and study the relationships between structure, morphology, composition, and functionality of the materials used in such systems. They also gain insights into additional effects arising when active materials are integrated into electrode composites. Investigation techniques for analyzing individual components (such as active materials, additives, and supports) and their interactions are covered in depth. Students get familiarized with the most important existing problems and drawbacks found in the novel energy devices and measures for their further improvements. Finally, they learn about wider aspects concerning the introduction of novel devices (impact on the environment and sustainable development, safety aspects, price-performance, development of relevant infrastructure etc. The general understanding of low-carbon technologies in the context of sustainable development will be emphasized.

Content

  1. Survey of modern sustainable technologies for electrochemical energy conversion and storage

  2. Principles and mechanisms of electrochemical conversion (fuel cells, electrolyzers)

  3. Principle of energy storage in modern sustainable devices (reversible batteries/accumulators, supercapacitors)

  4. Fundamental transport and reaction processes

  5. Target properties of active materials for energy storage and conversion (crystal structure, surface structure and morphology, surface functionalization, electrical properties, influence of defects, doping)

  6. The role of additives/non-active components (supports for active particles, binders, electrolytes)

  7. Synthetic procedures for preparation of active materials and composites

  8. Construction of electrodes and testing cells

  9. Overview of typical modern devices:
    a) fuel cells
    b) electrolyzers
    c) batteries
    d) supercapacitors

  10. Advantages and disadvantages of current generation of alternative devices and outlook

Intended learning outcomes

Understanding of principles of operation of modern devices for electrochemical energy conversion and storage.
Understanding of relationship between the basic materials properties (compostition, structure, morphology) and their functionality.
Understanding of transport and reaction mechanisms in these devices.
Understanding of side reactions, impact of additives, support materials and interactions between the active matter and additional phases in composite electrodes.
Systematic knowledge about different types of modern devices for energy storage and conversion.
Knowledge about limitations, existing issues and wider aspect concerning commercialization of novel devices, including the impact on environment, safety and economy.

Readings

• W. Vielstich, A. Lamm, and H.A. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology, Application, Vol. 1, Wiley, Chichester, 2003 E-version
• D. Pletcher & F.C. Walsh, Industrial Electrochemistry, 2nd ed., Chapman and Hall, London, 1990
• Fuel cell handbook, EG&G Services, Parsons, Inc., Science Applications International Corpora-tion, Morgantown, WV : U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technolo-gy Laboratory, 2000. E-version
• C. Vincent & B. Scrosati, Modern Batteries, Butterworth-Heinemann, 2nd Edition, 1997.
• Lithium Ion Batteries: Fundamentals and Performance, M. Wakihara, O. Yamamoto (Eds.), John Wiley & Sons, 2008.
• Goetzberger, V. U. Hoffmann, Photovoltaic Solar Energy Generation, Springer, Berlin, 2005. E-version

Assessment

Seminar work, Participation in laboratory work, Oral exam

Lecturer's references

Prof. dr. Nejc Hodnik:

Prof. dr. Nejc Hodnik je redni profesor za področje Materialov na Univerzi v Novi Gorici.

Prof. dr. Nejc Hodnik je vodja skupine za Elektrokatalizo na Odseku za katalizo in reakcijsko inženirstvo na Kemijskem inštitutu v Ljubljani. doktoriral na Fakulteti na kemijo in kemijsko inženirstvo Univerze v Ljubljani. Med doktoratom je bil kot mladi raziskovalec zaposlen na Kemijskem inštitutu pod vodstvom dr. Stanka Hočevarja, ki je vodil raziskave na temo gorivnih celic. Leta 2014 je, na podlagi individualne prestižne štipendije Marie-Curie (sedaj Marie Skłodowska-Curie), odšel na podoktorsko izobraževanje v Düsseldorf v Nemčiji na Institut Maxa-Plancka, njegov mentor je bil prof. dr. Karl Mayrhofer. Leta 2016 se je vrnil v Slovenijo in začel delovati na Odseku za katalizo in kemijsko inženirstvo Kemijskega inštituta. Med drugim je pridobil podoktorski projekt Javne agencije za raziskovalno dejavnost Republike Slovenije (ARRS) in leta 2017 je s štipendijo ARRS tri mesece deloval pri vodji ERC projekta v Italiji. Izkoristil pa je tudi komplementarni projekt ARRS po prvi prijavi na razpis ERC. Leta 2019 je bil imenovan za pridruženega izrednega profesorja na Univerzi v Novi Gorici, kjer deluje pri doktorskem programu Materiali (3. stopnja). Njegova bibliografija obsega več kot 100 znanstvenih člankov v mednarodnih revijah, več kot 20 vabljenih predavanj na mednarodnih srečanjih ter en mednarodni patent in tri mednarodne patentne prijave. Leta 2019 je prejel projekt Evropskega raziskovalnega sveta (ERC) za raziskovalce na začetku samostojne kariere (ERC Starting Grant).

• Double passivation water based galvanic displacement method for reproducible gram scale production of high performance pt-alloy electrocatalysts,
Matija Gatalo, Marjan Bele, Francisco Ruiz‐Zepeda, Ervin Šest, Martin Šala, Ana Rebeka Kamšek, Nik Maselj, Timotej Galun, Nejc Hodnik, Miran Gaberšček, Angewandte Chemie, 2019, vol. 58, 1-6,

• Atomically resolved anisotropic electrochemical shaping of nano-electrocatalyst,
Francisco Ruiz-Zepeda, Matija Gatalo, Andraž Pavlišič, Goran Dražić, Primož Jovanovič, Marjan Bele, Miran Gaberšček, Nejc Hodnik, Nano Letters, 2019, 19, 8, 4919-4927,

• Methodology for Investigating Electrochemical Gas Evolution Reactions: Floating Electrode as a Means for Effective Gas Bubble Removal, Primož Jovanovič, Kevin Stojanovski, Marjan Bele, Goran Dražić, Gorazd Koderman Podboršek, Luka Suhadolnik, Miran Gaberšček, Nejc Hodnik, Analytical Chemistry, 2019, 91, 16, 10353-10356,

  1. PASTRANA-MARTINEZ, L. M., GOMES, Helder T., DRAŽIĆ, Goran, FARIA, Joaquim Luís, SILVA, Adrián M. T. Hydrothermal synthesis of iron oxide photo-fenton catalysts: the effect of parameters on morphology, particle size and catalytic efficiency. Global NEST journal, 2014, vol. 16, 474-484.

• Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study,
Primož Jovanovič, Nejc Hodnik, Francisco Ruiz-Zepeda, Iztok Arčon, Barbara Jozinović, Milena Zorko, Marjan Bele, Martin Šala, Vid Simon Šelih, Samo Hočevar, Miran Gaberšček,,
Journal of the American Chemical Society, 2017, 139, 12837- 12846,

• Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution,Nejc Hodnik, Claudio Baldizzone, George Polymeros, Simon Geiger, Jan-Philipp Grote, Serhiy Cherevko, Andrea Mingers, Aleksandar Zeradjanin, Karl J. J. Mayrhofer,
Nature Communications, 2016, vol. 7, no. 13164, 1-6,