Jump to main content

Chemistry

This course is part of the programme
Bachelor's programme in Environment (first cycle)

Objectives and competences

Students acquire basic knowledge in general and inorganic chemistry relevant to understanding various areas of environmental science. This includes but is not limited to:
• Knowledge of basic concepts in the field of substance structure and chemical changes
• Understanding the relationships between the chemical elements and their periodic properties
• Understanding the relationship between the chemical and physical properties of elements, and their compounds, electronic structures and bond types
• Mastering basic chemical calculations to be used in practical exercises
• Acquisition of basic experimental skills in the chemical laboratory
• Knowledge of naming organic compounds using the IUPAC nomenclature
• Understanding the basic chemical and physical properties of organic substances

Prerequisites

High school level knowledge of mathematics is required.

The course provides students with the knowledge useful in other courses such as Environmental Chemistry, Green Chemistry, Biochemistry, Environmentally Friendly Technologies, Waste Treatment and Management, and others.

Content

The following chapters from general and inorganic chemistry are covered: introduction to general chemistry, stoichiometry, atomic structure and periodicity, chemical bonding, gases, liquids and solids, phase changes, properties of solutions, electrolytes, thermochemistry, chemical equilibrium, acids and bases, electrochemistry, chemical kinetics, introduction to inorganic chemistry and chemical nomenclature, the representative elements (hydrogen, alkali metals, alkaline earth metals, group 3A elements, group 4A elements, group 5A elements, group 6A elements, halogens, noble gases), transition metals, nomenclature of basic organic compounds, understanding of organic chemistry functional groups.

Intended learning outcomes

Students understand and can explain the basic concepts in the field of general and inorganic chemistry:
• (i) chemical foundations (chemical and physical properties of a substance, substance state and changes, relations between pure substance and mixture, elements and compounds, atoms and molecules, chemical formulae and reactions, stoichiometry laws, a mole unit, calculations with concentrations and other chemical quantities),
• (ii) the structure of an atom (the development of the atomic model, the Bohr and the quantum mechanical model of the atom, electronic configurations, periodicity of atomic sizes and ionization energies, balancing chemical and nuclear reactions),
• (iii) chemical bonding (types of chemical bonds, molecular structure determination),
• (iv) gases (gas laws and the ideal gas law, ideal and real gases, the basics of the kinetic molecular theory of gases),
• (v) liquids and solids (molecular forces, physical properties of liquids, different crystal structures),
• (vi) phase changes (phase diagram interpretation),
• (vii) properties of solutions (the Raoult law and deviations from it in real solutions, the distillation process, colligative properties of solutions, colloids),
• (vii) electrolytes (strong and weak electrolytes, the dissolution process, electrolysis),
• (ix) thermochemistry (internal energy and enthalpy, standard enthalpy of formation, reaction enthalpy calculations),
• (x) chemical equilibrium (the equilibrium constant and its meaning, Le Chatelier’s principle),
• (xi) acids and bases (Brønsted and Lewis definitions of strong and weak acids and bases, pH, titration curves),
• (xii) electrochemistry (galvanic cells, standard reduction potential, corrosion),
• (xiii) chemical kinetics (reaction rates, rate laws and integrated rate laws, importance of catalysis),
• (xiv) inorganic chemistry fundamentals and nomenclature (reactions of inorganic compounds, naming simple and coordination compounds),
• (xv) representative elements (the systematics of elements and their important compounds throughout the A groups in the periodic table),
• (xvi) transition elements (general properties of these elements and their important compounds).
• (xvii) understanding of basic organic chemistry functional groups and naming of simple organic compounds.

During tutorials, students get familiar with important stoichiometry calculations and with experimental skills in a general chemical laboratory.

Readings

  • Černigoj, U. in Bavcon Kralj, M. 2010. Kemijsko računanje: zbirka nalog z rešitvami za študente Okolja in drugih naravoslovnih programov. Nova Gorica: Univerza v Novi Gorici. UNG Publisher
  • Burdge, J. 2016. Chemistry, 4th edition. McGraw Hill. E-version
  • Zumdahl, S. S. in Zumdahl, S. A. 2014. Chemistry, 9th edition. Belmont: Brooks Cole. Catalogue
  • Lazarini, F. in Brenčič, J. 2004. Splošna in anorganska kemija. Ljubljana: DZS. Catalogue
  • Turel, I. in Leban, I. 2004. Kemija. Zbirka računskih nalog. Ljubljana: Fakulteta za strojništvo. Catalogue
  • Laboratory exercises available in pdf format from the assistants and lecturer

Assessment

Attendance and active participation (15%), Lab exercises (30%), Written examination (50%), Oral examination (5%).

A passing grade in two interval exams taken during the academic year exempts the students from taking the final exam. A passing grade in the written exam(s) is required to attend the oral examination.

Lecturer's references

Doc. Dr. Tina Škorjanc je zaposlena na Univerzi v Novi Gorici, kjer poučuje na Fakulteti za znanosti o okolju in raziskuje v Laboratoriju za raziskave materialov. Njeno področje raziskovanja so porozni organski polimeri (POP) in kovalentni organski okvirji (angl. covalent organic frameworks, COF) ter različne rabe teh vrst materialov. Njena doktorska dizertacija (New York University, 2020) je obravnavala POPe in COFe temelječe na organskih makrociklih kot sta kaliksaren in porfirin za zajemanje onesnaževal iz vode in zraka. Za doktorsko nalogo ji je Kemijski inštitut podelil Preglovo nagrado za izjemno doktorsko delo, kasneje pa je bila tudi finalistka izbora za nagrado Prometej znanosti, ki jo podeljuje Slovenska znanstvena fundacija. Leta 2021 je pridobila dvoletno financiranje Evropske komisije iz sheme Marie Sklodowska Curie Actions (MSCA). V okviru projekta COFsensor se je na Univerzi v Novi Gorici posvečala razvoju elektrokemijskih in fluorescenčnih biosenzorjev iz POPov in COFov. Med letoma 2023 in 2024 je na Univerzi v Kjotu sintetizirala porozne materiale za sinergistične protirakave terapije in se usposabljala na področju celične endoskopije, za kar je pridobila sredstva japonske vladne organizacije The Japan Society for Promotion of Science (JSPS). Je avtorica enega knjižnega poglavja in več kot 30 znanstvenih člankov z več kot 1450 citati; njen h-indeks je 18, i10-indeks pa 23.

Izbrane objave:
1) Skorjanc, T., Shetty, D., Kumar, S., Makuc, D., Mali, G., Volavšek, J., ... & Valant, M. (2023). Nitroreductase-sensitive fluorescent covalent organic framework for tumor hypoxia imaging in cells. Chemical Communications, 59(38), 5753-5756.
2) Skorjanc, T., Mavrič, A., Sørensen, M. N., Mali, G., Wu, C., & Valant, M. (2022). Cationic covalent organic polymer thin film for label-free electrochemical bacterial cell detection. ACS Sensors, 7(9), 2743-2749.
3) Skorjanc, T., Shetty, D., Mahmoud, M. E., Gándara, F., Martinez, J. I., Mohammed, A. K., ... & Trabolsi, A. (2021). Metallated isoindigo–porphyrin covalent organic framework photocatalyst with a narrow band gap for efficient CO2 conversion. ACS applied materials & interfaces, 14(1), 2015-2022.
4) Skorjanc, T., Shetty, D., & Valant, M. (2021). Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sensors, 6(4), 1461-1481.
5) Garai, B., Shetty, D., Skorjanc, T., Gándara, F., Naleem, N., Varghese, S., ... & Trabolsi, A. (2021). Taming the topology of calix [4] arene-based 2D-covalent organic frameworks: interpenetrated vs noninterpenetrated frameworks and their selective removal of cationic dyes. Journal of the American Chemical Society, 143(9), 3407-3415.
6) Skorjanc, T., Shetty, D., & Trabolsi, A. (2021). Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem, 7(4), 882-918.
7) Skorjanc, T., Shetty, D., Gándara, F., Ali, L., Raya, J., Das, G., ... & Trabolsi, A. (2020). Remarkably efficient removal of toxic bromate from drinking water with a porphyrin–viologen covalent organic framework. Chemical Science, 11(3), 845-850.