Jump to main content

Automatic Control Systems

Objectives and competences

Course objectives:
• to teach theoretical principles of modelling, computer simulation and control,
• to teach students the system engineering approach and understanding of the industrial control systems,
• to train competent professionals that are able to communicate with control-systems design engineers.

Competences:
knowledge of fundamental concepts of continuous control in industry,
knowledge of fundamental forms of signals that can be found in continous-time systems and their transformation to discrete form,
knowledge of modelling and analysis of continous-time and discrete-time systems,
basic knowledge of continous-time control design methods,
knowledge of methods for the analysis of closed-loop systems in the time and frequency domain.

Prerequisites

Required prerequisit knowledge from courses: Selected topics from applied mathematics and Introduction to production systems from the same programme and knowledge of mathematics, physics, computer science and electrical engineering on a bachelors level of general engineering course.

Content

  1. Introduction
  2. Signals in control systems
  3. Modelling and system analysis
  4. Control-systems design

Intended learning outcomes

Knowledge and understanding:
Students acquire the knowledge of fundamental concepts of continuous control in industry, the knowledge of fundamental forms of signals that can be found in continous-time systems and their transformation to discrete form, the knowledge of modelling and analysis of continous-time and discrete-time systems, the basic knowledge of continous-time control design methods, the
knowledge of methods for the analysis of closed-loop systems in the time domain.

Readings

  • Zupančič B. (2011): Avtomatsko vodenje sistemov, Založba FE in FRI, Ljubljana. E-gradivo
  • Kocijan J. (2022): Zbirka nalog iz avtomatskega vodenja sistemov. Vipava; Ljubljana.
  • Khalil H.K. (2023): Control Systems: An Introduction. Michigan Publishing.
  • Karl Johan Åstroem and Richard M. Murray. Feedback Systems, An introduction for scientists and engineers. Princeton University Press, 2008. Catalogue E-version
  • Več avtorjev (1998): Celostni pristop k računalniškem vodenju procesov, urednik S. Strmčnik, Založba Fakultete za elektrotehniko, Ljubljana. E-version
  • J. Kocijan, S. Strmčnik (2016): Osnove avtomatskega vodenja, Založba Univerze v Novi Gorici, Nova Gorica. Založba UNG
  • Kocijan J. (1996): Načrtovanje vodenja dinamičnih sistemov, Zbirka nalog, Založba FE in FRI, Ljubljana. Catalogue
  • Dolinar D. (2009): Dinamika linearnih sistemov in regulacije, 2. ponatis, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor. Catalogue
  • Franklin G. F., Powell D. J., Emami-Naeini A. (2014): Feedback control of dynamic systems, 7. izdaja, Pearson Educational International, London. Catalogue E-version
  • Ogata K. (2009): Modern control engineering, 5. izdaja, Prentice Hall, Pearson Educational International, London. Catalogue E-version
  • DiStefano J.J.,III., Stubberud A.R., Williams I.J.(2013): Theory and Problems of Feedback and Control Systems, 2. izdaja, McGraw-Hill Book Company, New York. Catalogue E-version
  • Dorf R.C.(2016): Modern Control Systems, 13. izdaja, Pearson, Harlow. Catalogue E-version
  • Zupančič B.(2010): Zvezni regulacijski sistemi, I.del, 2. izdaja Založba FER, Ljubljana. Catalogue
  • Zupančič B. (2010): Zvezni regulacijski sistemi, II. del, 2. izdaja Fakulteta za elektrotehniko, Ljubljana. Catalogue

Assessment

• Written exam, which assesses knowledge of the theoretical concepts and the implementation of concepts of principles of control-systems analysis and design. 100%

Lecturer's references

Prof. dr. Juš Kocijan is currently a senior researcher at the Department of Systems and Control, Jozef Stefan Institute and Professor of Electrical Engineering at the School of Engineering and Management, University of Nova Gorica, Slovenia. His other experience includes: running a number of international and domestic research projects, serving as editor and on editorial boards of research journals, serving as a member of IFAC Technical committee on Computational Intelligence in Control. Prof. Kocijan is a Senior member IEEE, IEEE Control Systems Society, a member of SLOSIM – Slovenian Society for Simulation and Modelling and Automatic control society of Slovenia. His research interests include modelling of dynamic systems with Gaussian process models, Control based on Gaussian process models, Multiple-model approaches to modelling and control, Applied nonlinear control, Individual Channel Analysis and Design.

Selected bibliography

KOCIJAN, Juš. Modelling and control of dynamic systems using Gaussian process models, (Advances in industrial control). Cham [etc.]: Springer, cop. 2016. XVI, 267 str., graf. prikazi. ISBN 978-3-319-21020-9, doi: 10.1007/978-3-319-21021-6. [COBISS.SI-ID 29101607]

KARBA, Rihard, KARER, Gorazd, KOCIJAN, Juš, BAJD, Tadej, ŽAGAR KARER, Mojca, ŽAGAR KARER, Mojca (urednik), FAJFAR, Tanja (urednik). Terminološki slovar avtomatike, (Zbirka Slovarji). Ljubljana: Založba ZRC, 2014. 136 str. ISBN 978-961-254-719-6. [COBISS.SI-ID 275900160]

KOCIJAN, Juš, GRADIŠAR, Dejan, BOŽNAR, Marija, GRAŠIČ, Boštjan, MLAKAR, Primož. On-line algorithm for ground-level ozone prediction with a mobile station. Atmospheric environment, ISSN 1352-2310. [Print ed.], 2016, vol. 131, str. 326-333, doi: 10.1016/j.atmosenv.2016.02.012. [COBISS.SI-ID 29306919]

ALEKSOVSKI, Darko, KOCIJAN, Juš, DŽEROSKI, Sašo. Ensembles of fuzzy linear model trees for the identification of multi-output systems. IEEE transactions on fuzzy systems, ISSN 1063-6706. [Print ed.], 2016, vol. 24, no. 4, str. 916-929, doi: 10.1109/TFUZZ.2015.2489234. [COBISS.SI-ID 28967207]

KOCIJAN, Juš, HANČIČ, Marko, PETELIN, Dejan, BOŽNAR, Marija, MLAKAR, Primož. Regressor selection for ozone prediction. Simulation modelling practice and theory, ISSN 1569-190X, maj 2015, vol. 54, str. 101-115, doi: 10.1016/j.simpat.2015.03.004. [COBISS.SI-ID 28481319]

KOCIJAN, Juš, HVALA, Nadja. Sequencing batch-reactor control using Gaussian-process models. Bioresource technology, ISSN 0960-8524. [Print ed.], jun. 2013, vol. 137, str. 340-348, doi: 10.1016/j.biortech.2013.03.138. [COBISS.SI-ID 26698535]

PETELIN, Dejan, GRANCHAROVA, Alexandra, KOCIJAN, Juš. Evolving Gaussian process models for prediction of ozone concentration in the air. Simulation modelling practice and theory, 2013, vol. 33, str. 68-80, doi: 10.1016/j.simpat.2012.04.005. [COBISS.SI-ID 26629159]

JUŽNIČ-ZONTA, Živko, KOCIJAN, Juš, FLOTATS, Xavier, VREČKO, Darko. Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states. Water res. (Oxford). [Print Ed.], 2012, vol. 46, no. 18, str. 6121-6131, doi: 10.1016/j.watres.2012.08.035. [COBISS.SI-ID 26152231]

GRANCHAROVA, Alexandra, KOCIJAN, Juš, JOHANSEN, Tor Arne. Explicit output-feedback nonlinear predictive control based on black-box models. Eng. appl. artif. intell.. [Print ed.], 2011, vol. 24, no. 2, str. 388-397. [COBISS.SI-ID 24397351]

AŽMAN, Kristjan, KOCIJAN, Juš. Dynamical systems identification using Gaussian process models with incorporated local models. Eng. appl. artif. intell.. [Print ed.], 2011, vol. 24, no. 2, str. 398-408. [COBISS.SI-ID 24397095]